New potential therapeutic applications for certain phytocannabinoids revealed by pharmacological discoveries

Roger Pertwee
Cannabis - a unique source of "phytocannabinoids" (at least 112) - plus at least 441 other compounds

- Tetrahydrocannabinol-type
- Cannabidiol-type
- Cannabigerol-type
- Cannabichromene-type
- Cannabicyclol-type
- Cannabinol-type
- Cannabielsoin-type
- Cannabitriol-type
- Miscellaneous-type
- Cannabinodiol-type

air-oxidation artifacts?

Δ^9-THC acts through cannabinoid receptors

- Discovery of CB_1 & CB_2 cannabinoid receptors (cloned in 1990 & 1993)

CB_1 and CB_2 receptors are GPCR expressed by neurons and immune cells, respectively.

Human CB_1 Receptor:
- Extracellular N-terminal
- Intracellular C-terminal

Human CB_2 Receptor:
- Extracellular N-terminal
- Intracellular C-terminal

CB_1/CB_2 homology = ca 44% (35% to 82% within TM domains)
Δ⁹-THC is licensed for clinical use

<table>
<thead>
<tr>
<th></th>
<th>THC</th>
<th>Sativex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>USA</td>
<td>Can, EU etc</td>
</tr>
<tr>
<td>Anti-emetic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Appetite stimulant</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Multiple sclerosis & cancer pain</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>First licensed</td>
<td>1986</td>
<td>2005</td>
</tr>
</tbody>
</table>

- Δ⁹-THC = dronabinol = Marinol® = synthetic
 (2.5, 5 or 10 mg capsules by mouth)

- Sativex® = cannabis extract:
 mainly Δ⁹-THC & cannabidiol
 (oromucosal spray)
Δ⁹-THC also has non-CB₁/CB₂ targets

GPR55 receptors (+)
CB₁ & CB₂ receptors (+)
PPARγ receptors (+)

Ligand-gated ion channels
- glycine α₁, α₁ β₁ (↑)
- 5-HT₃A (-)

Cation channels
- TRPA1 & TRPV2 (+)
- TRPM8 (-)

Phospholipases (+)

Voltage-gated ion channels & other GPCRs, TRP cation channels, enzymes & cellular uptake processes

Neuronal uptake of
- NE (+)
- DA (±)
- 5-HT(-)

Cellular uptake of adenosine (-)

Just some actions of THC
- <1 µM
- 1 to 10 µM

GPR18 receptors (+)

Δ⁹-THC also has non-CB₁/CB₂ targets

THC has a unique pharmacological "fingerprint"

- GPR55 receptors (+)
- CB₁ & CB₂ receptors (+)
- PPARγ receptors (+)
- Ligand-gated ion channels
 - glycine α₁, α₁ β₁ (↑)
 - 5-HT₃A (-)
- Cation channels
 - TRPA1 & TRPV2 (+)
 - TRPM8 (-)
- Phospholipases (+)
- Lysophosphatidylcholine acyl transferase activity (-)

Neuronal uptake of
- NE (+)
- DA (±)
- 5-HT(-)

Cellular uptake of adenosine (-)

Voltage-gated ion channels & other GPCRs, TRP cation channels, enzymes & cellular uptake processes

Handbook of Cannabis

Edited by Roger Pertwee

- Includes scientific information about cannabis valuable to academic and industrial researchers
- Contains wide-ranging information about cannabis providing policymakers, government advisers, politicians, lawyers, journalists, students and parents with important relevant information about cannabis
- Each chapter is written by a group of one or more authors recognized internationally as an established expert

978-0-19-966268-5 | Hardback
August 2014 | £85.00

http://ukcatalogue.oup.com/product/9780199662685.do
Cannabis - a unique source of "phytocannabinoids" (at least 112) - plus at least 441 other compounds

- Tetrahydrocannabinol-type
- Cannabidiol-type
- Cannabigerol-type
- Cannabichromene-type
- Cannabicyclol-type
- Cannabielsein-type
- Cannabitirol-type
- Miscellaneous-type
- Cannabinol-type
- Cannabinodiol-type

Air-oxidation artifacts?
The Pharmacology and Therapeutic Potential of Phytocannabinoids

- Four phytocannabinoids
 - tetrahydrocannabivar (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- Just some of their many pharmacological targets
 - the 5-HT_{1A} receptor
 - the α₂ adrenoreceptor
 - the CB₁ and the CB₂ receptor
 - etc etc etc

- Possible new therapeutic benefits of exploiting pharmacological actions of THCV, CBG, CBD or CBDA
THCV: Potential therapeutic applications:
- CB1 antagonism + CB2 partial agonism
 - Dependence/relapse: e.g. nicotine, alcohol
 - Neurodegenerative disorders
 - e.g. Parkinson's disease
 - Systemic sclerosis
 - Alcohol-induced liver injury
 - Liver damage from ischaemia & reperfusion
 - Diabetic nephropathy
 - Obesity
 - Stroke
 - Retinitis pigmentosa

THCV: Potential therapeutic applications:
- 5-HT1A receptor-mediated – e.g.
 - Opioid dependence
 - Positive and negative symptoms of schizophrenia

The Pharmacology and Therapeutic Potential of Phytocannabinoids

- Four phytocannabinoids
 - tetrahydrocannabivarin (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- Just some of their many pharmacological targets
 - the 5-HT1A receptor
 - the α2 adrenoreceptor
 - the CB1 and the CB2 receptor
 - etc etc etc

- Possible new therapeutic benefits of exploiting pharmacological actions of THCV, CBG, CBD or CBDA
Four phytocannabinoids
- tetrahydrocannabivarin (THCV)
- cannabigerol (CBG)
- cannabidiol (CBD)
- cannabidiolic acid (CBDA)

Just some of their many pharmacological targets
- the 5-HT$_{1A}$ receptor
- the α_2 adrenoreceptor
- the CB$_1$ and the CB$_2$ receptor
- etc etc etc

Possible new therapeutic benefits of exploiting pharmacological actions of THCV, CBG, CBD or CBDA
Four phytocannabinoids
- tetrahydrocannabivarin (THCV)
- cannabigerol (CBG)
- cannabidiol (CBD)
- cannabidiolic acid (CBDA)

Just some of their many pharmacological targets
- the 5-HT$_{1A}$ receptor
- the α_2 adrenoreceptor
- the CB$_1$ and the CB$_2$ receptor
- etc etc etc

Possible new therapeutic benefits of exploiting pharmacological actions of THCV, CBG, CBD or CBDA

CBG:
Potential therapeutic applications:
- α_2-adrenoceptor-mediated
 - Acute & inflammatory pain
 - Migraine; headaches
 - Cannabis & opioid dependence
 - Alcohol & nicotine dependence
 - Anxiety & panic disorders
 - Post-traumatic stress disorder
 - Attention-deficit hyperactivity disorder
 - Tourette syndrome (vs tics)
 - Insomnia; sleep hyperhidrosis
 - Menopausal hot flushes
 - Hypertension

5-HT$_{1A}$ receptor-mediated
- Positive and negative symptoms of schizophrenia
- Depression
- Neuropathic pain
The Pharmacology and Therapeutic Potential of Phytocannabinoids

- Four phytocannabinoids
 - tetrahydrocannabivarin (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- Just some of their many pharmacological targets
 - the 5-HT$_{1A}$ receptor
 - the α_2 adrenoreceptor
 - the CB$_1$ and the CB$_2$ receptor
 - etc etc etc

- Possible new therapeutic benefits of exploiting pharmacological actions of THCV, CBG, CBD or CBDA
The Pharmacology and Therapeutic Potential of Phytocannabinoids

- Four phytocannabinoids
 - tetrahydrocannabivarin (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- Just some of their many pharmacological targets
 - the 5-HT$_{1A}$ receptor
 - the α_2 adrenoreceptor
 - the CB$_1$ and the CB$_2$ receptor
 - etc etc etc

- Possible new therapeutic benefits of exploiting pharmacological actions of THCV, CBG, CBD or CBDA

CBD and CBDA: Potential therapeutic applications: 5-HT$_{1A}$ receptor-mediated
- Opioid dependence
- Depression
- Anxiety disorders
- Cognitive disorders
- Neuropathic pain
- Nausea and vomiting
- Negative symptoms of schizophrenia
- Extrapyramidal syndrome
- Symptoms of Parkinson’s disease
- L-DOPA-induced dyskinesia
- Cerebral infarction/stroke
Some pharmacological actions and potential therapeutic applications of certain phytocannabinoids: great expectations

- **Four phytocannabinoids**
 - tetrahydrocannabivarin (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- **Four pharmacological targets**
 - the CB₁ and the CB₂ receptor
 - the α₂ adrenoreceptor
 - the 5-HT₁A receptor

- **Possible therapeutic benefits of** targeting one or more of these receptors with THCV, CBG, CBD or CBDA
Some pharmacological actions and potential therapeutic applications of certain phytocannabinoids: great expectations

- Four phytocannabinoids: "fighto" cannabinoids
 - tetrahydrocannabivarin (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- Four pharmacological targets: *in vitro & in vivo*
 - the CB₁ and the CB₂ receptor
 - THCV (↓CB₁ plus ↑CB₂)
 - the α₂ adrenoreceptor
 - CBG (↑)
 - the 5-HT₁A receptor
 - CBD (↑) & CBDA (↑) THCV (↑) & CBG (↓)

- Possible therapeutic benefits of targeting one or more of these receptors with THCV, CBG, CBD or CBDA
Some pharmacological actions and potential therapeutic applications of certain phytocannabinoids: great expectations

- **Four phytocannabinoids**
 - tetrahydrocannabivarin (THCV)
 - cannabigerol (CBG)
 - cannabidiol (CBD)
 - cannabidiolic acid (CBDA)

- **Four pharmacological targets**
 - the CB₁ and the CB₂ receptor
 - the α_2 adrenoreceptor
 - the 5-HT₁₆ receptor

- **Possible therapeutic benefits of**
 - targeting one or more of these receptors with THCV, CBG, CBD or CBDA

Some possible future directions

1. identify best therapeutic application(s) for:
 - clinical data needed
 - CBD
 - CBDA
 - CBG
 - THCV

2. explore clinical advantages of “adjunctive strategies”…e.g.
 - low-dose CBG (α_2-agonism) plus low-dose THC (CB₁ agonism) for pain relief

3. perform structure-activity studies with synthetic analogues of these phytocannabinoids to optimize one or more of their many potential therapeutic effects

4. seek out other phytocannabinoid actions
Acknowledgements

<table>
<thead>
<tr>
<th>Country</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen</td>
<td>Lesley Stevenson, Maria Grazia Cascio, Pietro Marini</td>
</tr>
<tr>
<td></td>
<td>Mirela Delibegovic, Fiona Murray, Guy Bewick, Matteo Zanda, Peter Teismann, Dana Dawson, Heather Wilson, Iain Brown et al.</td>
</tr>
<tr>
<td>Italy</td>
<td>Barbara Costa, Vincenzo Di Marzo, Mauro Maccarrone, Sabatino Maione, Daniela Parolaro, Tiziana Rubino, Javier Fernández-Ruiz</td>
</tr>
<tr>
<td>Canada</td>
<td>Linda Parker</td>
</tr>
<tr>
<td>USA</td>
<td>Eliot Gardner, Aron Lichtman, Anu Mahadevan, Pál Pacher, Ganesh Thakur, Jenny Wiley, Xi Zheng-Xiong</td>
</tr>
<tr>
<td>Spain</td>
<td>Sandor Bátkai</td>
</tr>
<tr>
<td>Germany</td>
<td>Ruth Ross, Daniele Bolognini, Gemma Baillie, Lisa Gauson</td>
</tr>
<tr>
<td>Israel</td>
<td>Raphael Mechoulam, Reem Smoum</td>
</tr>
</tbody>
</table>

Financial Support
GW Pharmaceuticals, NIH (NIDA), NHS, BBSRC & Diabetes UK